FP-Stalker:

Tracking Browser Fingerprint Evolutions

<u>Antoine Vastel</u>, Pierre Laperdrix, Walter Rudametkin, Romain Rouvoy

Wednesday 23rd May, 2018

University of Lille / Inria, France

Objective: Track users over multiple visits

• Especially useful when deleting cookies

Approach: Load an extra script that:

- Generates a unique identifier from a device configuration
- Exploits the diversity of configurations

Attribute	Value
Encoding	gzip, deflate, sdch, br
Languages	en-US,en;q=0.8,es;q=0.6
	Mozilla/5.0 (Windows NT 10.0; Win64; ×64)
User-agent	AppleWebKit/537.36 (KHTML, like Gecko)
	Chrome/54.0.2840.99 Safari/537.36
	Cwm fjordbank glyp <mark>hs vext qu</mark> iz, 🕲
Canvas	Cwm fjordbank glyphs vext quiz, 😄
Platform	Win32
Resolution	2560×1440×24

Fingerprint uniqueness: 80-90 % [PETS 2010, S&P 2016]

But uniqueness is not enough for tracking: we also need stability [WWW 2015]

Objectives of this paper:

- 1. Evaluate fingerprint stability
- 2. Evaluate the effectiveness of browser fingerprint tracking

https://amiunique.org:

- 1 website
- 2 browser extensions (Chrome and Firefox)

2 years: From July 2015 to early August 2017 98,598 fingerprints gathered from 1,905 distinct browsers (data cleaned)

Stability varies depending on the attribute and the user

	Percentile (days)		
Attribute	50th	90th	95th
Resolution	Never	3.1	1.8
User agent	39.7	13.0	8.4
Canvas	290.0	35.3	17.2
Language	Never	215.1	56.7
Accept	Never	163.8	109.5
Cookies	Never	Never	Never

Definition: Tracking is the process of linking fingerprints from a given browser

2 options:

- 1. Identical/similar fingerprint: link to an existing browser identifier
- 2. No/too many similar fingerprints: assign a new browser identifier

Strict rules:

- OS, platform and browser family must be identical
- Browser version is constant or increasing

Statistical rules:

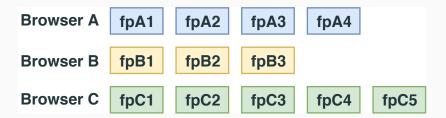
- Local storage, ..., canvas \Rightarrow must be identical
- Similarity of User agent, ..., headers \Rightarrow must be >0.75
- Resolution, timezone can be different
- No more than 2 attribute changes

Our hybrid approach combines:

- 1. Rules: Use strict rules to filter candidates
- 2. Machine learning: Apply supervised ML to increase accuracy

Compute the probability that 2 fingerprints originate from the same browser

Random forest:


- Multiple decision trees
- Vote between different decision trees
- Tradeoff between precision and interpretability

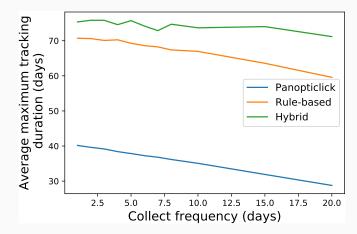
Attribute	FP new	FP database	Vector
Encoding	"gzip, deflate, br"	"gzip, deflate"	0.87
Languages	"en-US,en;q=0.5"	" fr-FR,fr;q=0.8,en- US; q=0.6,en;q=0.4"	0.53
Canvas	Cwm fjordbank <mark>ling m</mark> ext quiz, ♥ Cwm fjordbank glyphs vext quiz, ♥	Cwm fjordbank glyp Cwm fjordbank glyphs vext quiz, 😁	0
Number changes			4

Train the random forest model:

- Training set composed of 40 % data chronologically ordered
- Feed pairs of fingerprints to the algorithm
- Apply undersampling to reduce overfitting


Evaluate the effectiveness of browser fingerprint tracking Test set: 59, 159 fingerprints from 1, 395 browsers

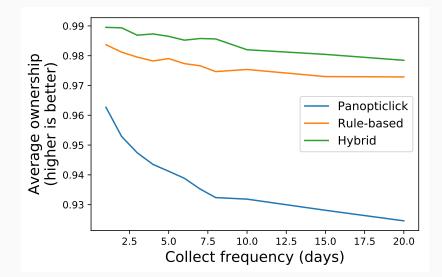
Simulate the fingerprinting frequency (1 day, 2 days, ..., 20 days)


Goal: compare tracking effectiveness at different collect frequencies

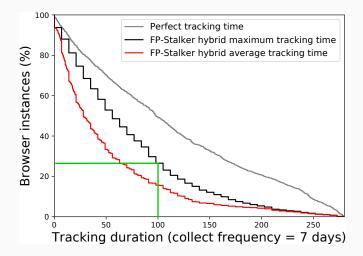
Link each fingerprint in the generated test set (chronologically)

Average maximum tracking duration

Period of time a linking algorithm correctly matches the fingerprints of a given browser in a single tracking chain



Ratio of a chain owned by the majoritarian browser


Example: ownership(Chain 1) = $\frac{4}{4+1} = 0.8$

Average ownership

Details for collect frequency = 7 days

26% of browsers tracked more than 100 days

Fingerprint tracking requires uniqueness and stability

Stability depends on:

- the attributes
- the users/browsers/context

FP-Stalker, two approaches:

- 1. Rule-based: faster (\approx 100 ms)
- 2. Hybrid: track 10 days longer, on average (pprox 500 ms)

26% of browsers tracked more than 100 days